Problem to solve
Find the indefinite integral \[\int\frac{3\sin^4[x]-2\cos^2[x]}{1+\sin^2[x]} dx\]
Solution
STEP 1
Take the integral:
 integral(3 sin^4(x) - 2 cos^2(x))/(sin^2(x) + 1) dx
STEP 2
Multiply numerator and denominator of (3 sin^4(x) - 2 cos^2(x))/(sin^2(x) + 1) by csc^6(x):
 = integral(3 csc^2(x) - 2 cot^2(x) csc^4(x))/(csc^6(x) + csc^4(x)) dx
STEP 3
Prepare to substitute u = cot(x). Rewrite (3 csc^2(x) - 2 cot^2(x) csc^4(x))/(csc^6(x) + csc^4(x)) using csc^2(x) = cot^2(x) + 1:
 = integral-((2 cot^4(x) + 2 cot^2(x) - 3) csc^2(x))/((cot^2(x) + 1)^2 (cot^2(x) + 2)) dx
STEP 4
For the integrand -((2 cot^4(x) + 2 cot^2(x) - 3) csc^2(x))/((cot^2(x) + 1)^2 (cot^2(x) + 2)), substitute u = cot(x) and du = -csc^2(x) dx:
 = integral(2 u^4 + 2 u^2 - 3)/((u^2 + 1)^2 (u^2 + 2)) du
STEP 5
For the integrand (2 u^4 + 2 u^2 - 3)/((u^2 + 1)^2 (u^2 + 2)), use partial fractions:
 = integral1/(u^2 + 2) + 1/(u^2 + 1) - 3/(u^2 + 1)^2 du
STEP 6
Integrate the sum term by term and factor out constants:
 = integral1/(u^2 + 2) du + integral1/(u^2 + 1) du - 3 integral1/(u^2 + 1)^2 du
STEP 7
Factor 2 from the denominator:
 = integral1/(2 (u^2/2 + 1)) du + integral1/(u^2 + 1) du - 3 integral1/(u^2 + 1)^2 du
STEP 8
Factor out constants:
 = 1/2 integral1/(u^2/2 + 1) du + integral1/(u^2 + 1) du - 3 integral1/(u^2 + 1)^2 du
STEP 9
For the integrand 1/(u^2/2 + 1), substitute s = u/sqrt(2) and ds = 1/sqrt(2) du:
 = 1/sqrt(2) integral1/(s^2 + 1) ds + integral1/(u^2 + 1) du - 3 integral1/(u^2 + 1)^2 du
STEP 10
The integral of 1/(s^2 + 1) is tan^(-1)(s):
 = (tan^(-1)(s))/sqrt(2) + integral1/(u^2 + 1) du - 3 integral1/(u^2 + 1)^2 du
STEP 11
The integral of 1/(u^2 + 1) is tan^(-1)(u):
 = (tan^(-1)(s))/sqrt(2) + tan^(-1)(u) - 3 integral1/(u^2 + 1)^2 du
STEP 12
For the integrand 1/(u^2 + 1)^2, substitute u = tan(p) and du = sec^2(p) dp. Then (u^2 + 1)^2 = (tan^2(p) + 1)^2 = sec^4(p) and p = tan^(-1)(u):
 = (tan^(-1)(s))/sqrt(2) + tan^(-1)(u) - 3 integral cos^2(p) dp
STEP 13
Write cos^2(p) as 1/2 cos(2 p) + 1/2:
 = (tan^(-1)(s))/sqrt(2) + tan^(-1)(u) - 3 integral(1/2 cos(2 p) + 1/2) dp
STEP 14
Integrate the sum term by term and factor out constants:
 = (tan^(-1)(s))/sqrt(2) + tan^(-1)(u) - 3/2 integral cos(2 p) dp - 3/2 integral1 dp
STEP 15
For the integrand cos(2 p), substitute w = 2 p and dw = 2 dp:
 = (tan^(-1)(s))/sqrt(2) + tan^(-1)(u) - 3/4 integral cos(w) dw - 3/2 integral1 dp
STEP 16
The integral of cos(w) is sin(w):
 = (tan^(-1)(s))/sqrt(2) + tan^(-1)(u) - (3 sin(w))/4 - 3/2 integral1 dp
STEP 17
The integral of 1 is p:
 = -(3 p)/2 + (tan^(-1)(s))/sqrt(2) + tan^(-1)(u) - (3 sin(w))/4 + constant
STEP 18
Substitute back for w = 2 p:
 = -(3 p)/2 - 3/4 sin(2 p) + (tan^(-1)(s))/sqrt(2) + tan^(-1)(u) + constant
STEP 19
Substitute back for p = tan^(-1)(u):
 = 1/2 (sqrt(2) tan^(-1)(s) - (3 u)/(u^2 + 1) - tan^(-1)(u)) + constant
STEP 20
Substitute back for s = u/sqrt(2):
 = 1/2 (-(3 u)/(u^2 + 1) - tan^(-1)(u) + sqrt(2) tan^(-1)(u/sqrt(2))) + constant
STEP 21
Substitute back for u = cot(x):
 = 1/2 (-3 sin(x) cos(x) - tan^(-1)(cot(x)) + sqrt(2) tan^(-1)(cot(x)/sqrt(2))) + constant
STEP 22
An alternative form of the integral is:
 = 1/4 (-3 sin(2 x) - 2 tan^(-1)(cot(x)) + 2 sqrt(2) tan^(-1)(cot(x)/sqrt(2))) + constant
STEP 23
Which is equivalent for restricted x values to:
Answer: | 
 | = x/2 - 3/4 sin(2 x) - (tan^(-1)(sqrt(2) tan(x)))/sqrt(2) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back