Problem to solve
Find the indefinite integral \[\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\]
Solution
STEP 1
Take the integral:
 integral(4 x^4 - 2)/(x^3 + 4 x^2 + x - 6) dx
STEP 2
For the integrand (4 x^4 - 2)/(x^3 + 4 x^2 + x - 6), do long division:
 = integral4 x + 1/(6 (x - 1)) - 62/(3 (x + 2)) + 161/(2 (x + 3)) - 16 dx
STEP 3
Integrate the sum term by term and factor out constants:
 = 161/2 integral1/(x + 3) dx - 62/3 integral1/(x + 2) dx + 4 integral x dx + 1/6 integral1/(x - 1) dx - 16 integral1 dx
STEP 4
For the integrand 1/(x + 3), substitute u = x + 3 and du = dx:
 = 161/2 integral1/u du - 62/3 integral1/(x + 2) dx + 4 integral x dx + 1/6 integral1/(x - 1) dx - 16 integral1 dx
STEP 5
The integral of 1/u is log(u):
 = (161 log(u))/2 - 62/3 integral1/(x + 2) dx + 4 integral x dx + 1/6 integral1/(x - 1) dx - 16 integral1 dx
STEP 6
For the integrand 1/(x + 2), substitute s = x + 2 and ds = dx:
 = (161 log(u))/2 - 62/3 integral1/s ds + 4 integral x dx + 1/6 integral1/(x - 1) dx - 16 integral1 dx
STEP 7
The integral of 1/s is log(s):
 = -(62 log(s))/3 + (161 log(u))/2 + 4 integral x dx + 1/6 integral1/(x - 1) dx - 16 integral1 dx
STEP 8
The integral of x is x^2/2:
 = 2 x^2 - (62 log(s))/3 + (161 log(u))/2 + 1/6 integral1/(x - 1) dx - 16 integral1 dx
STEP 9
For the integrand 1/(x - 1), substitute p = x - 1 and dp = dx:
 = 2 x^2 - (62 log(s))/3 + (161 log(u))/2 + 1/6 integral1/p dp - 16 integral1 dx
STEP 10
The integral of 1/p is log(p):
 = 2 x^2 + log(p)/6 - (62 log(s))/3 + (161 log(u))/2 - 16 integral1 dx
STEP 11
The integral of 1 is x:
 = log(p)/6 - (62 log(s))/3 + (161 log(u))/2 + 2 x^2 - 16 x + constant
STEP 12
Substitute back for p = x - 1:
 = -(62 log(s))/3 + (161 log(u))/2 + 2 x^2 - 16 x + 1/6 log(x - 1) + constant
STEP 13
Substitute back for s = x + 2:
 = (161 log(u))/2 + 2 x^2 - 16 x + 1/6 log(x - 1) - 62/3 log(x + 2) + constant
STEP 14
Substitute back for u = x + 3:
 = 2 x^2 - 16 x + 1/6 log(x - 1) - 62/3 log(x + 2) + 161/2 log(x + 3) + constant
STEP 15
Factor the answer a different way:
 = 1/6 (12 x^2 - 96 x + log(x - 1) - 124 log(x + 2) + 483 log(x + 3)) + constant
STEP 16
Which is equivalent for restricted x values to:
Answer: | 
 | = 1/6 (12 x^2 - 96 x + log(1 - x) - 124 log(x + 2) + 483 log(x + 3)) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back