Problem to solve
Find the indefinite integral \[\int\frac{3x^4+4x^2+5x}{[x-1][x^2+1]^2} dx\]
Solution
STEP 1
Take the integral:
 integral(3 x^4 + 4 x^2 + 5 x)/((x - 1) (x^2 + 1)^2) dx
STEP 2
For the integrand (3 x^4 + 4 x^2 + 5 x)/((x - 1) (x^2 + 1)^2), use partial fractions:
 = integral(3 - 2 x)/(x^2 + 1)^2 + 3/(x - 1) dx
STEP 3
Integrate the sum term by term and factor out constants:
 = integral(3 - 2 x)/(x^2 + 1)^2 dx + 3 integral1/(x - 1) dx
STEP 4
For the integrand (3 - 2 x)/(x^2 + 1)^2, substitute x = tan(u) and dx = sec^2(u) du. Then (x^2 + 1)^2 = (tan^2(u) + 1)^2 = sec^4(u) and u = tan^(-1)(x):
 = integral cos^2(u) (3 - 2 tan(u)) du + 3 integral1/(x - 1) dx
STEP 5
Write cos^2(u) as 1 - sin^2(u):
 = integral(1 - sin^2(u)) (3 - 2 tan(u)) du + 3 integral1/(x - 1) dx
STEP 6
Expanding the integrand (1 - sin^2(u)) (3 - 2 tan(u)) gives -3 sin^2(u) - 2 tan(u) + 2 sin^2(u) tan(u) + 3:
 = integral(-3 sin^2(u) - 2 tan(u) + 2 sin^2(u) tan(u) + 3) du + 3 integral1/(x - 1) dx
STEP 7
Integrate the sum term by term and factor out constants:
 = 2 integral sin^2(u) tan(u) du - 2 integral tan(u) du - 3 integral sin^2(u) du + 3 integral1 du + 3 integral1/(x - 1) dx
STEP 8
Write sin^2(u) as 1 - cos^2(u):
 = 2 integral(1 - cos^2(u)) tan(u) du - 2 integral tan(u) du - 3 integral sin^2(u) du + 3 integral1 du + 3 integral1/(x - 1) dx
STEP 9
Expanding the integrand (1 - cos^2(u)) tan(u) gives tan(u) - sin(u) cos(u):
 = 2 integral(tan(u) - sin(u) cos(u)) du - 2 integral tan(u) du - 3 integral sin^2(u) du + 3 integral1 du + 3 integral1/(x - 1) dx
STEP 10
Integrate the sum term by term and factor out constants:
 = -2 integral sin(u) cos(u) du - 3 integral sin^2(u) du + 3 integral1 du + 3 integral1/(x - 1) dx
STEP 11
For the integrand sin(u) cos(u), substitute s = cos(u) and ds = -sin(u) du:
 = 2 integral s ds - 3 integral sin^2(u) du + 3 integral1 du + 3 integral1/(x - 1) dx
STEP 12
The integral of s is s^2/2:
 = s^2 - 3 integral sin^2(u) du + 3 integral1 du + 3 integral1/(x - 1) dx
STEP 13
Write sin^2(u) as 1/2 - 1/2 cos(2 u):
 = s^2 - 3 integral(1/2 - 1/2 cos(2 u)) du + 3 integral1 du + 3 integral1/(x - 1) dx
STEP 14
Integrate the sum term by term and factor out constants:
 = s^2 + 3/2 integral cos(2 u) du + 3/2 integral1 du + 3 integral1/(x - 1) dx
STEP 15
For the integrand cos(2 u), substitute p = 2 u and dp = 2 du:
 = s^2 + 3/4 integral cos(p) dp + 3/2 integral1 du + 3 integral1/(x - 1) dx
STEP 16
The integral of cos(p) is sin(p):
 = s^2 + (3 sin(p))/4 + 3/2 integral1 du + 3 integral1/(x - 1) dx
STEP 17
The integral of 1 is u:
 = s^2 + (3 u)/2 + (3 sin(p))/4 + 3 integral1/(x - 1) dx
STEP 18
For the integrand 1/(x - 1), substitute w = x - 1 and dw = dx:
 = s^2 + (3 u)/2 + (3 sin(p))/4 + 3 integral1/w dw
STEP 19
The integral of 1/w is log(w):
 = (3 sin(p))/4 + s^2 + (3 u)/2 + 3 log(w) + constant
STEP 20
Substitute back for w = x - 1:
 = (3 sin(p))/4 + s^2 + (3 u)/2 + 3 log(x - 1) + constant
STEP 21
Substitute back for p = 2 u:
 = s^2 + (3 u)/2 + 3/4 sin(2 u) + 3 log(x - 1) + constant
STEP 22
Substitute back for s = cos(u):
 = (3 u)/2 + 3/4 sin(2 u) + cos^2(u) + 3 log(x - 1) + constant
STEP 23
Substitute back for u = tan^(-1)(x):
 = 3 log(x - 1) + 3/2 tan^(-1)(x) + 3/4 sin(2 tan^(-1)(x)) + cos(tan^(-1)(x))^2 + constant
STEP 24
Simplify using cos(tan^(-1)(z)) = 1/sqrt(z^2 + 1):
 = (3 x + 2)/(2 x^2 + 2) + 3 log(x - 1) + 3/2 tan^(-1)(x) + constant
STEP 25
Which is equivalent for restricted x values to:
Answer: | 
 | = 1/2 ((3 x + 2)/(x^2 + 1) + 6 log(1 - x) + 3 tan^(-1)(x)) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back