Problem to solve
Find the indefinite integral \[\int\frac{\sqrt{[3x^2+4]^3}}{x^4} dx\]
Solution
STEP 1
Take the integral:
 integral(3 x^2 + 4)^(3/2)/x^4 dx
STEP 2
For the integrand (3 x^2 + 4)^(3/2)/x^4, substitute x = (2 tan(u))/sqrt(3) and dx = (2 sec^2(u))/sqrt(3) du. Then (3 x^2 + 4)^(3/2) = (4 tan^2(u) + 4)^(3/2) = 8 sec^3(u) and u = tan^(-1)((sqrt(3) x)/2):
 = 2/sqrt(3) integral9/2 csc^4(u) sec(u) du
STEP 3
Factor out constants:
 = 3 sqrt(3) integral csc^4(u) sec(u) du
STEP 4
For the integrand csc^4(u) sec(u), use the trigonometric identity csc^2(u) = cot^2(u) + 1:
 = 3 sqrt(3) integral(cot^2(u) + 1)^2 sec(u) du
STEP 5
Expanding the integrand (cot^2(u) + 1)^2 sec(u) gives sec(u) + cot^3(u) csc(u) + 2 cot(u) csc(u):
 = 3 sqrt(3) integral(sec(u) + cot^3(u) csc(u) + 2 cot(u) csc(u)) du
STEP 6
Integrate the sum term by term and factor out constants:
 = 3 sqrt(3) integral sec(u) du + 3 sqrt(3) integral cot^3(u) csc(u) du + 6 sqrt(3) integral cot(u) csc(u) du
STEP 7
The integral of sec(u) is log(tan(u) + sec(u)):
 = 3 sqrt(3) log(tan(u) + sec(u)) + 3 sqrt(3) integral cot^3(u) csc(u) du + 6 sqrt(3) integral cot(u) csc(u) du
STEP 8
For the integrand cot^3(u) csc(u), use the trigonometric identity cot^2(u) = csc^2(u) - 1:
 = 3 sqrt(3) log(tan(u) + sec(u)) + 3 sqrt(3) integral cot(u) csc(u) (csc^2(u) - 1) du + 6 sqrt(3) integral cot(u) csc(u) du
STEP 9
For the integrand cot(u) csc(u) (csc^2(u) - 1), substitute s = csc(u) and ds = -cot(u) csc(u) du:
 = 3 sqrt(3) log(tan(u) + sec(u)) + -3 sqrt(3) integral(s^2 - 1) ds + 6 sqrt(3) integral cot(u) csc(u) du
STEP 10
Integrate the sum term by term and factor out constants:
 = 3 sqrt(3) log(tan(u) + sec(u)) + -3 sqrt(3) integral s^2 ds + 3 sqrt(3) integral1 ds + 6 sqrt(3) integral cot(u) csc(u) du
STEP 11
The integral of s^2 is s^3/3:
 = -sqrt(3) s^3 + 3 sqrt(3) log(tan(u) + sec(u)) + 3 sqrt(3) integral1 ds + 6 sqrt(3) integral cot(u) csc(u) du
STEP 12
The integral of 1 is s:
 = 3 sqrt(3) s - sqrt(3) s^3 + 3 sqrt(3) log(tan(u) + sec(u)) + 6 sqrt(3) integral cot(u) csc(u) du
STEP 13
The integral of cot(u) csc(u) is -csc(u):
 = -sqrt(3) s^3 + 3 sqrt(3) s - 6 sqrt(3) csc(u) + 3 sqrt(3) log(tan(u) + sec(u)) + constant
STEP 14
Substitute back for s = csc(u):
 = -sqrt(3) csc^3(u) - 3 sqrt(3) csc(u) + 3 sqrt(3) log(tan(u) + sec(u)) + constant
STEP 15
Substitute back for u = tan^(-1)((sqrt(3) x)/2):
 = -sqrt(3) csc(tan^(-1)((sqrt(3) x)/2))^3 - 3 sqrt(3) csc(tan^(-1)((sqrt(3) x)/2)) + 3 sqrt(3) log(tan(tan^(-1)((sqrt(3) x)/2)) + sec(tan^(-1)((sqrt(3) x)/2))) + constant
STEP 16
Simplify using csc(tan^(-1)(z)) = sqrt(z^2 + 1)/z, sec(tan^(-1)(z)) = sqrt(z^2 + 1) and tan(tan^(-1)(z)) = z:
 = 3 sqrt(3) log(1/2 (sqrt(3 x^2 + 4) + sqrt(3) x)) - (4 (3 x^2 + 1) sqrt(3 x^2 + 4))/(3 x^3) + constant
STEP 17
Which is equivalent for restricted x values to:
Answer: | 
 | = -(8 (sqrt((3 x^2)/4 + 1) (3 x^2 + 1) - 9/8 sqrt(3) x^3 sinh^(-1)((sqrt(3) x)/2)))/(3 x^3) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back