Problem to solve
Find the indefinite integral \[\int\frac{x^2}{\sqrt{2x^2-5}} dx\]
Solution
STEP 1
Take the integral:
 integral x^2/sqrt(2 x^2 - 5) dx
STEP 2
For the integrand x^2/sqrt(2 x^2 - 5), substitute x = sqrt(5/2) sec(u) and dx = sqrt(5/2) tan(u) sec(u) du. Then sqrt(2 x^2 - 5) = sqrt(5 sec^2(u) - 5) = sqrt(5) tan(u) and u = sec^(-1)(sqrt(2/5) x):
 = sqrt(5/2) integral1/2 sqrt(5) sec^3(u) du
STEP 3
Factor out constants:
 = 5/(2 sqrt(2)) integral sec^3(u) du
STEP 4
Use the reduction formula, integral sec^m(u) du = (sin(u) sec^(m - 1)(u))/(m - 1) + (m - 2)/(m - 1) integral sec^(-2 + m)(u) du, where m = 3:
 = (5 tan(u) sec(u))/(4 sqrt(2)) + 5/(4 sqrt(2)) integral sec(u) du
STEP 5
Multiply numerator and denominator of sec(u) by tan(u) + sec(u):
 = (5 tan(u) sec(u))/(4 sqrt(2)) + 5/(4 sqrt(2)) integral(sec^2(u) + tan(u) sec(u))/(tan(u) + sec(u)) du
STEP 6
For the integrand (sec^2(u) + tan(u) sec(u))/(tan(u) + sec(u)), substitute s = tan(u) + sec(u) and ds = (sec^2(u) + tan(u) sec(u)) du:
 = (5 tan(u) sec(u))/(4 sqrt(2)) + 5/(4 sqrt(2)) integral1/s ds
STEP 7
The integral of 1/s is log(s):
 = (5 log(s))/(4 sqrt(2)) + (5 tan(u) sec(u))/(4 sqrt(2)) + constant
STEP 8
Substitute back for s = tan(u) + sec(u):
 = (5 tan(u) sec(u))/(4 sqrt(2)) + (5 log(tan(u) + sec(u)))/(4 sqrt(2)) + constant
STEP 9
Substitute back for u = sec^(-1)(sqrt(2/5) x):
 = (5 sec(sec^(-1)(sqrt(2/5) x)) tan(sec^(-1)(sqrt(2/5) x)))/(4 sqrt(2)) + (5 log(sec(sec^(-1)(sqrt(2/5) x)) + tan(sec^(-1)(sqrt(2/5) x))))/(4 sqrt(2)) + constant
STEP 10
Simplify using sec(sec^(-1)(z)) = z and tan(sec^(-1)(z)) = sqrt(1 - 1/z^2) z:
 = 1/4 sqrt(2 x^2 - 5) x + (5 log((sqrt(2 x^2 - 5) + sqrt(2) x)/sqrt(5)))/(4 sqrt(2)) + constant
STEP 11
Factor the answer a different way:
 = 1/8 (2 sqrt(2 x^2 - 5) x + 5 sqrt(2) log((sqrt(2 x^2 - 5) + sqrt(2) x)/sqrt(5))) + constant
STEP 12
Which is equivalent for restricted x values to:
Answer: | 
 | = 1/8 (2 sqrt(2 x^2 - 5) x + 5 sqrt(2) tanh^(-1)(x/sqrt(x^2 - 5/2))) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back