Problem to solve
Find the indefinite integral \[\int\arcsin^4[x] dx\]
Solution
STEP 1
Take the integral:
 integral sin^(-1)(x)^4 dx
STEP 2
For the integrand sin^(-1)(x)^2, integrate by parts, integral f dg = f g - integral g df, where 
 f = sin^(-1)(x)^4, dg = dx, df = (4 sin^(-1)(x)^3)/sqrt(1 - x^2) dx, g = x:
 = x sin^(-1)(x)^4 - 4 integral(x sin^(-1)(x)^3)/sqrt(1 - x^2) dx
STEP 3
For the integrand (x sin^(-1)(x)^3)/sqrt(1 - x^2), integrate by parts, integral f dg = f g - integral g df, where 
 f = sin^(-1)(x)^3, dg = x/sqrt(1 - x^2) dx, df = (3 sin^(-1)(x)^2)/sqrt(1 - x^2) dx, g = -sqrt(1 - x^2):
 = 4 sqrt(1 - x^2) sin^(-1)(x)^3 + x sin^(-1)(x)^4 - 12 integral sin^(-1)(x)^2 dx
STEP 4
For the integrand sin^(-1)(x)^2, integrate by parts, integral f dg = f g - integral g df, where 
 f = sin^(-1)(x)^2, dg = dx, df = (2 sin^(-1)(x))/sqrt(1 - x^2) dx, g = x:
 = -12 x sin^(-1)(x)^2 + 4 sqrt(1 - x^2) sin^(-1)(x)^3 + x sin^(-1)(x)^4 + 24 integral(x sin^(-1)(x))/sqrt(1 - x^2) dx
STEP 5
For the integrand (x sin^(-1)(x))/sqrt(1 - x^2), integrate by parts, integral f dg = f g - integral g df, where 
 f = sin^(-1)(x), dg = x/sqrt(1 - x^2) dx, df = 1/sqrt(1 - x^2) dx, g = -sqrt(1 - x^2):
 = -24 sqrt(1 - x^2) sin^(-1)(x) - 12 x sin^(-1)(x)^2 + 4 sqrt(1 - x^2) sin^(-1)(x)^3 + x sin^(-1)(x)^4 + 24 integral1 dx
STEP 6
The integral of 1 is x:
Answer: | 
 | = 4 sqrt(1 - x^2) sin^(-1)(x)^3 - 24 sqrt(1 - x^2) sin^(-1)(x) + 24 x + x sin^(-1)(x)^4 - 12 x sin^(-1)(x)^2 + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back