Problem to solve
Find the indefinite integral \[\int\frac{x^6+6x^4+8x^2-4}{[x^2+4][x^2+3]} dx\]
Solution
STEP 1
Take the integral:
 integral(x^6 + 6 x^4 + 8 x^2 - 4)/((x^2 + 3) (x^2 + 4)) dx
STEP 2
For the integrand (x^6 + 6 x^4 + 8 x^2 - 4)/((x^2 + 3) (x^2 + 4)), do long division:
 = integral x^2 - 1/(x^2 + 3) + 4/(x^2 + 4) - 1 dx
STEP 3
Integrate the sum term by term and factor out constants:
 = 4 integral1/(x^2 + 4) dx - integral1/(x^2 + 3) dx + integral x^2 dx - integral1 dx
STEP 4
Factor 4 from the denominator:
 = 4 integral1/(4 (x^2/4 + 1)) dx - integral1/(x^2 + 3) dx + integral x^2 dx - integral1 dx
STEP 5
Factor out constants:
 = integral1/(x^2/4 + 1) dx - integral1/(x^2 + 3) dx + integral x^2 dx - integral1 dx
STEP 6
For the integrand 1/(x^2/4 + 1), substitute u = x/2 and du = 1/2 dx:
 = 2 integral1/(u^2 + 1) du - integral1/(x^2 + 3) dx + integral x^2 dx - integral1 dx
STEP 7
The integral of 1/(u^2 + 1) is tan^(-1)(u):
 = 2 tan^(-1)(u) - integral1/(x^2 + 3) dx + integral x^2 dx - integral1 dx
STEP 8
Factor 3 from the denominator:
 = 2 tan^(-1)(u) - integral1/(3 (x^2/3 + 1)) dx + integral x^2 dx - integral1 dx
STEP 9
Factor out constants:
 = 2 tan^(-1)(u) - 1/3 integral1/(x^2/3 + 1) dx + integral x^2 dx - integral1 dx
STEP 10
For the integrand 1/(x^2/3 + 1), substitute s = x/sqrt(3) and ds = 1/sqrt(3) dx:
 = 2 tan^(-1)(u) - 1/sqrt(3) integral1/(s^2 + 1) ds + integral x^2 dx - integral1 dx
STEP 11
The integral of 1/(s^2 + 1) is tan^(-1)(s):
 = -(tan^(-1)(s))/sqrt(3) + 2 tan^(-1)(u) + integral x^2 dx - integral1 dx
STEP 12
The integral of x^2 is x^3/3:
 = x^3/3 - (tan^(-1)(s))/sqrt(3) + 2 tan^(-1)(u) - integral1 dx
STEP 13
The integral of 1 is x:
 = -(tan^(-1)(s))/sqrt(3) + 2 tan^(-1)(u) + x^3/3 - x + constant
STEP 14
Substitute back for s = x/sqrt(3):
 = 2 tan^(-1)(u) + x^3/3 - x - (tan^(-1)(x/sqrt(3)))/sqrt(3) + constant
STEP 15
Substitute back for u = x/2:
Answer: | 
 | = x^3/3 - x + 2 tan^(-1)(x/2) - (tan^(-1)(x/sqrt(3)))/sqrt(3) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back