Problem to solve
Find the indefinite integral \[\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\]
Solution
STEP 1
Take the integral:
 integral((x + 1)^(1/3) - sqrt(x + 1))/x dx
STEP 2
For the integrand ((x + 1)^(1/3) - sqrt(x + 1))/x, substitute u = sqrt(x + 1) and du = 1/(2 sqrt(x + 1)) dx:
 = 2 integral(u ((u^2)^(1/3) - u))/(u^2 - 1) du
STEP 3
Expanding the integrand (u ((u^2)^(1/3) - u))/(u^2 - 1) gives (u (u^2)^(1/3))/(u^2 - 1) - u^2/(u^2 - 1):
 = 2 integral((u (u^2)^(1/3))/(u^2 - 1) - u^2/(u^2 - 1)) du
STEP 4
Integrate the sum term by term and factor out constants:
 = 2 integral(u (u^2)^(1/3))/(u^2 - 1) du - 2 integral u^2/(u^2 - 1) du
STEP 5
For the integrand (u (u^2)^(1/3))/(u^2 - 1), substitute s = u^2 and ds = 2 u du:
 = integral s^(1/3)/(s - 1) ds - 2 integral u^2/(u^2 - 1) du
STEP 6
For the integrand s^(1/3)/(s - 1), substitute p = s^(1/3) and dp = 1/(3 s^(2/3)) ds:
 = 3 integral p^3/(p^3 - 1) dp - 2 integral u^2/(u^2 - 1) du
STEP 7
For the integrand p^3/(p^3 - 1), do long division:
 = 3 integral(-p - 2)/(3 (p^2 + p + 1)) + 1/(3 (p - 1)) + 1 dp - 2 integral u^2/(u^2 - 1) du
STEP 8
Integrate the sum term by term and factor out constants:
 = integral(-p - 2)/(p^2 + p + 1) dp + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 9
Rewrite the integrand (-p - 2)/(p^2 + p + 1) as -(2 p + 1)/(2 (p^2 + p + 1)) - 3/(2 (p^2 + p + 1)):
 = integral(-(2 p + 1)/(2 (p^2 + p + 1)) - 3/(2 (p^2 + p + 1))) dp + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 10
Integrate the sum term by term and factor out constants:
 = -1/2 integral(2 p + 1)/(p^2 + p + 1) dp - 3/2 integral1/(p^2 + p + 1) dp + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 11
For the integrand (2 p + 1)/(p^2 + p + 1), substitute w = p^2 + p + 1 and dw = (2 p + 1) dp:
 = -1/2 integral1/w dw - 3/2 integral1/(p^2 + p + 1) dp + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 12
The integral of 1/w is log(w):
 = -log(w)/2 - 3/2 integral1/(p^2 + p + 1) dp + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 13
For the integrand 1/(p^2 + p + 1), complete the square:
 = -log(w)/2 - 3/2 integral1/((p + 1/2)^2 + 3/4) dp + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 14
For the integrand 1/((p + 1/2)^2 + 3/4), substitute v = p + 1/2 and dv = dp:
 = -log(w)/2 - 3/2 integral1/(v^2 + 3/4) dv + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 15
Factor 3/4 from the denominator:
 = -log(w)/2 - 3/2 integral4/(3 ((4 v^2)/3 + 1)) dv + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 16
Factor out constants:
 = -log(w)/2 - 2 integral1/((4 v^2)/3 + 1) dv + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 17
For the integrand 1/((4 v^2)/3 + 1), substitute z_1 = (2 v)/sqrt(3) and dz_1 = 2/sqrt(3) dv:
 = -log(w)/2 - sqrt(3) integral1/(z_1^2 + 1) dz_1 + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 18
The integral of 1/(z_1^2 + 1) is tan^(-1)(z_1):
 = -sqrt(3) tan^(-1)(z_1) - log(w)/2 + integral1/(p - 1) dp + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 19
For the integrand 1/(p - 1), substitute z_2 = p - 1 and dz_2 = dp:
 = -sqrt(3) tan^(-1)(z_1) - log(w)/2 + integral1/z_2 dz_2 + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 20
The integral of 1/z_2 is log(z_2):
 = -sqrt(3) tan^(-1)(z_1) - log(w)/2 + log(z_2) + 3 integral1 dp - 2 integral u^2/(u^2 - 1) du
STEP 21
The integral of 1 is p:
 = 3 p - sqrt(3) tan^(-1)(z_1) - log(w)/2 + log(z_2) - 2 integral u^2/(u^2 - 1) du
STEP 22
For the integrand u^2/(u^2 - 1), do long division:
 = 3 p - sqrt(3) tan^(-1)(z_1) - log(w)/2 + log(z_2) - 2 integral-1/(2 (u + 1)) + 1 + 1/(2 (u - 1)) du
STEP 23
Integrate the sum term by term and factor out constants:
 = 3 p - sqrt(3) tan^(-1)(z_1) - log(w)/2 + log(z_2) + integral1/(u + 1) du - integral1/(u - 1) du - 2 integral1 du
STEP 24
For the integrand 1/(u + 1), substitute z_3 = u + 1 and dz_3 = du:
 = 3 p - sqrt(3) tan^(-1)(z_1) - log(w)/2 + log(z_2) + integral1/z_3 dz_3 - integral1/(u - 1) du - 2 integral1 du
STEP 25
The integral of 1/z_3 is log(z_3):
 = 3 p - sqrt(3) tan^(-1)(z_1) - log(w)/2 + log(z_2) + log(z_3) - integral1/(u - 1) du - 2 integral1 du
STEP 26
For the integrand 1/(u - 1), substitute z_4 = u - 1 and dz_4 = du:
 = 3 p - sqrt(3) tan^(-1)(z_1) - log(w)/2 + log(z_2) + log(z_3) - integral1/z_4 dz_4 - 2 integral1 du
STEP 27
The integral of 1/z_4 is log(z_4):
 = 3 p - sqrt(3) tan^(-1)(z_1) - log(w)/2 + log(z_2) + log(z_3) - log(z_4) - 2 integral1 du
STEP 28
The integral of 1 is u:
 = 3 p - 2 u - log(w)/2 + log(z_2) + log(z_3) - log(z_4) - sqrt(3) tan^(-1)(z_1) + constant
STEP 29
Substitute back for z_4 = u - 1:
 = 3 p - 2 u - log(u - 1) - log(w)/2 + log(z_2) + log(z_3) - sqrt(3) tan^(-1)(z_1) + constant
STEP 30
Substitute back for z_3 = u + 1:
 = 3 p - 2 u - log(u - 1) + log(u + 1) - log(w)/2 + log(z_2) - sqrt(3) tan^(-1)(z_1) + constant
STEP 31
Substitute back for z_2 = p - 1:
 = 3 p + log(p - 1) - 2 u - log(u - 1) + log(u + 1) - log(w)/2 - sqrt(3) tan^(-1)(z_1) + constant
STEP 32
Substitute back for z_1 = (2 v)/sqrt(3):
 = 3 p + log(p - 1) - 2 u - log(u - 1) + log(u + 1) - sqrt(3) tan^(-1)((2 v)/sqrt(3)) - log(w)/2 + constant
STEP 33
Substitute back for v = p + 1/2:
 = 3 p + log(p - 1) - sqrt(3) tan^(-1)((2 p + 1)/sqrt(3)) - 2 u - log(u - 1) + log(u + 1) - log(w)/2 + constant
STEP 34
Substitute back for w = p^2 + p + 1:
 = -1/2 log(p^2 + p + 1) + 3 p + log(p - 1) - sqrt(3) tan^(-1)((2 p + 1)/sqrt(3)) - 2 u - log(u - 1) + log(u + 1) + constant
STEP 35
Substitute back for p = s^(1/3):
 = -1/2 log(s^(2/3) + s^(1/3) + 1) + 3 s^(1/3) + log(s^(1/3) - 1) - sqrt(3) tan^(-1)((2 s^(1/3) + 1)/sqrt(3)) - 2 u - log(u - 1) + log(u + 1) + constant
STEP 36
Substitute back for s = u^2:
 = 3 (u^2)^(1/3) + log((u^2)^(1/3) - 1) - 1/2 log((u^2)^(2/3) + (u^2)^(1/3) + 1) - sqrt(3) tan^(-1)((2 (u^2)^(1/3) + 1)/sqrt(3)) - 2 u - log(u - 1) + log(u + 1) + constant
STEP 37
Substitute back for u = sqrt(x + 1):
 = -2 sqrt(x + 1) + 3 (x + 1)^(1/3) + log((x + 1)^(1/3) - 1) - log(sqrt(x + 1) - 1) + log(sqrt(x + 1) + 1) - 1/2 log((x + 1)^(2/3) + (x + 1)^(1/3) + 1) - sqrt(3) tan^(-1)((2 (x + 1)^(1/3) + 1)/sqrt(3)) + constant
STEP 38
An alternative form of the integral is:
 = -2 sqrt(x + 1) + 3 (x + 1)^(1/3) + log((((x + 1)^(1/3) - 1) (sqrt(x + 1) + 1))/(sqrt(x + 1) - 1)) - 1/2 log((x + 1)^(2/3) + (x + 1)^(1/3) + 1) - sqrt(3) tan^(-1)((2 (x + 1)^(1/3) + 1)/sqrt(3)) + constant
STEP 39
Which is equivalent for restricted x values to:
Answer: | 
 | = 1/2 (-4 sqrt(x + 1) + 6 (x + 1)^(1/3) + 4 log((x + 1)^(1/6) + 1) + log((x + 1)^(1/3) - (x + 1)^(1/6) + 1) - 3 log((x + 1)^(1/3) + (x + 1)^(1/6) + 1) + 2 sqrt(3) tan^(-1)((1 - 2 (x + 1)^(1/6))/sqrt(3)) + 2 sqrt(3) tan^(-1)((2 (x + 1)^(1/6) + 1)/sqrt(3))) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back