Problem to solve
Find the indefinite integral \[\int\frac{x^6}{\sqrt{[x^2+4]^3}} dx\]
Solution
STEP 1
Take the integral:
 integral x^6/(x^2 + 4)^(3/2) dx
STEP 2
For the integrand x^6/(x^2 + 4)^(3/2), substitute x = 2 tan(u) and dx = 2 sec^2(u) du. Then (x^2 + 4)^(3/2) = (4 tan^2(u) + 4)^(3/2) = 8 sec^3(u) and u = tan^(-1)(x/2):
 = 2 integral8 sin(u) tan^5(u) du
STEP 3
Factor out constants:
 = 16 integral sin(u) tan^5(u) du
STEP 4
For the integrand sin(u) tan^5(u), use the trigonometric identity tan^2(u) = sec^2(u) - 1:
 = 16 integral sin(u) tan(u) (sec^2(u) - 1)^2 du
STEP 5
Expanding the integrand sin(u) tan(u) (sec^2(u) - 1)^2 gives sin(u) tan(u) + tan^2(u) sec^3(u) - 2 tan^2(u) sec(u):
 = 16 integral(sin(u) tan(u) + tan^2(u) sec^3(u) - 2 tan^2(u) sec(u)) du
STEP 6
Integrate the sum term by term and factor out constants:
 = 16 integral tan^2(u) sec^3(u) du - 32 integral tan^2(u) sec(u) du + 16 integral sin(u) tan(u) du
STEP 7
For the integrand tan^2(u) sec^3(u), write tan^2(u) as sec^2(u) - 1:
 = 16 integral sec^3(u) (sec^2(u) - 1) du - 32 integral tan^2(u) sec(u) du + 16 integral sin(u) tan(u) du
STEP 8
Expanding the integrand sec^3(u) (sec^2(u) - 1) gives sec^5(u) - sec^3(u):
 = 16 integral(sec^5(u) - sec^3(u)) du - 32 integral tan^2(u) sec(u) du + 16 integral sin(u) tan(u) du
STEP 9
Integrate the sum term by term and factor out constants:
 = 16 integral sec^5(u) du - 16 integral sec^3(u) du - 32 integral tan^2(u) sec(u) du + 16 integral sin(u) tan(u) du
STEP 10
Use the reduction formula, integral sec^m(u) du = (sin(u) sec^(m - 1)(u))/(m - 1) + (m - 2)/(m - 1) integral sec^(-2 + m)(u) du, where m = 5:
 = 4 tan(u) sec^3(u) - 4 integral sec^3(u) du - 32 integral tan^2(u) sec(u) du + 16 integral sin(u) tan(u) du
STEP 11
Use the reduction formula, integral sec^m(u) du = (sin(u) sec^(m - 1)(u))/(m - 1) + (m - 2)/(m - 1) integral sec^(-2 + m)(u) du, where m = 3:
 = -2 tan(u) sec(u) + 4 tan(u) sec^3(u) - 2 integral sec(u) du - 32 integral tan^2(u) sec(u) du + 16 integral sin(u) tan(u) du
STEP 12
The integral of sec(u) is log(tan(u) + sec(u)):
 = -2 log(tan(u) + sec(u)) - 2 tan(u) sec(u) + 4 tan(u) sec^3(u) - 32 integral tan^2(u) sec(u) du + 16 integral sin(u) tan(u) du
STEP 13
For the integrand tan^2(u) sec(u), write tan^2(u) as sec^2(u) - 1:
 = -2 log(tan(u) + sec(u)) - 2 tan(u) sec(u) + 4 tan(u) sec^3(u) - 32 integral sec(u) (sec^2(u) - 1) du + 16 integral sin(u) tan(u) du
STEP 14
Expanding the integrand sec(u) (sec^2(u) - 1) gives sec^3(u) - sec(u):
 = -2 log(tan(u) + sec(u)) - 2 tan(u) sec(u) + 4 tan(u) sec^3(u) - 32 integral(sec^3(u) - sec(u)) du + 16 integral sin(u) tan(u) du
STEP 15
Integrate the sum term by term and factor out constants:
 = -2 log(tan(u) + sec(u)) - 2 tan(u) sec(u) + 4 tan(u) sec^3(u) - 32 integral sec^3(u) du + 32 integral sec(u) du + 16 integral sin(u) tan(u) du
STEP 16
Use the reduction formula, integral sec^m(u) du = (sin(u) sec^(m - 1)(u))/(m - 1) + (m - 2)/(m - 1) integral sec^(-2 + m)(u) du, where m = 3:
 = -2 log(tan(u) + sec(u)) - 18 tan(u) sec(u) + 4 tan(u) sec^3(u) + 16 integral sec(u) du + 16 integral sin(u) tan(u) du
STEP 17
The integral of sec(u) is log(tan(u) + sec(u)):
 = 14 log(tan(u) + sec(u)) - 18 tan(u) sec(u) + 4 tan(u) sec^3(u) + 16 integral sin(u) tan(u) du
STEP 18
For the integrand sin(u) tan(u), use the trigonometric identities sin^2(u) + cos^2(u) = 1 and tan(u) = sin(u)/cos(u):
 = 14 log(tan(u) + sec(u)) - 18 tan(u) sec(u) + 4 tan(u) sec^3(u) + 16 integral(sec(u) - cos(u)) du
STEP 19
Integrate the sum term by term and factor out constants:
 = 14 log(tan(u) + sec(u)) - 18 tan(u) sec(u) + 4 tan(u) sec^3(u) + 16 integral sec(u) du - 16 integral cos(u) du
STEP 20
The integral of sec(u) is log(tan(u) + sec(u)):
 = 30 log(tan(u) + sec(u)) - 18 tan(u) sec(u) + 4 tan(u) sec^3(u) - 16 integral cos(u) du
STEP 21
The integral of cos(u) is sin(u):
 = -16 sin(u) + 4 tan(u) sec^3(u) - 18 tan(u) sec(u) + 30 log(tan(u) + sec(u)) + constant
STEP 22
Substitute back for u = tan^(-1)(x/2):
 = -16 sin(tan^(-1)(x/2)) + 4 tan(tan^(-1)(x/2)) sec(tan^(-1)(x/2))^3 - 18 tan(tan^(-1)(x/2)) sec(tan^(-1)(x/2)) + 30 log(tan(tan^(-1)(x/2)) + sec(tan^(-1)(x/2))) + constant
STEP 23
Simplify using sec(tan^(-1)(z)) = sqrt(z^2 + 1), sin(tan^(-1)(z)) = z/sqrt(z^2 + 1) and tan(tan^(-1)(z)) = z:
 = 1/4 x (x^2 + 4)^(3/2) - 9/2 x sqrt(x^2 + 4) - (16 x)/sqrt(x^2 + 4) + 30 log(1/2 (sqrt(x^2 + 4) + x)) + constant
STEP 24
Factor the answer a different way:
 = (x^5 - 10 x^3 + 120 sqrt(x^2 + 4) log(1/2 (sqrt(x^2 + 4) + x)) - 120 x)/(4 sqrt(x^2 + 4)) + constant
STEP 25
Which is equivalent for restricted x values to:
Answer: | 
 | = (x^5 - 10 x^3 + 120 sqrt(x^2 + 4) sinh^(-1)(x/2) - 120 x)/(4 sqrt(x^2 + 4)) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back