Problem to solve
Find the indefinite integral \[\int[-4x^4+6x^2+8x-1]\cos[x] dx\]
Solution
STEP 1
Take the integral:
 integral(-4 x^4 + 6 x^2 + 8 x - 1) cos(x) dx
STEP 2
Expanding the integrand (-4 x^4 + 6 x^2 + 8 x - 1) cos(x) gives -4 x^4 cos(x) + 6 x^2 cos(x) + 8 x cos(x) - cos(x):
 = integral(-4 x^4 cos(x) + 6 x^2 cos(x) + 8 x cos(x) - cos(x)) dx
STEP 3
Integrate the sum term by term and factor out constants:
 = -4 integral x^4 cos(x) dx + 6 integral x^2 cos(x) dx + 8 integral x cos(x) dx - integral cos(x) dx
STEP 4
For the integrand x^4 cos(x), integrate by parts, integral f dg = f g - integral g df, where 
 f = x^4, dg = cos(x) dx, df = 4 x^3 dx, g = sin(x):
 = -4 x^4 sin(x) + 16 integral x^3 sin(x) dx + 6 integral x^2 cos(x) dx + 8 integral x cos(x) dx - integral cos(x) dx
STEP 5
For the integrand x^3 sin(x), integrate by parts, integral f dg = f g - integral g df, where 
 f = x^3, dg = sin(x) dx, df = 3 x^2 dx, g = -cos(x):
 = -16 x^3 cos(x) - 4 x^4 sin(x) + 54 integral x^2 cos(x) dx + 8 integral x cos(x) dx - integral cos(x) dx
STEP 6
For the integrand x^2 cos(x), integrate by parts, integral f dg = f g - integral g df, where 
 f = x^2, dg = cos(x) dx, df = 2 x dx, g = sin(x):
 = -16 x^3 cos(x) + 54 x^2 sin(x) - 4 x^4 sin(x) - 108 integral x sin(x) dx + 8 integral x cos(x) dx - integral cos(x) dx
STEP 7
For the integrand x sin(x), integrate by parts, integral f dg = f g - integral g df, where 
 f = x, dg = sin(x) dx, df = dx, g = -cos(x):
 = 108 x cos(x) - 16 x^3 cos(x) + 54 x^2 sin(x) - 4 x^4 sin(x) - 109 integral cos(x) dx + 8 integral x cos(x) dx
STEP 8
The integral of cos(x) is sin(x):
 = 108 x cos(x) - 16 x^3 cos(x) - 109 sin(x) + 54 x^2 sin(x) - 4 x^4 sin(x) + 8 integral x cos(x) dx
STEP 9
For the integrand x cos(x), integrate by parts, integral f dg = f g - integral g df, where 
 f = x, dg = cos(x) dx, df = dx, g = sin(x):
 = 108 x cos(x) - 16 x^3 cos(x) - 109 sin(x) + 8 x sin(x) + 54 x^2 sin(x) - 4 x^4 sin(x) - 8 integral sin(x) dx
STEP 10
The integral of sin(x) is -cos(x):
 = -4 x^4 sin(x) - 16 x^3 cos(x) + 54 x^2 sin(x) + 8 x sin(x) - 109 sin(x) + 108 x cos(x) + 8 cos(x) + constant
STEP 11
Which is equal to:
Answer: | 
 | = (-16 x^3 + 108 x + 8) cos(x) + (-4 x^4 + 54 x^2 + 8 x - 109) sin(x) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back