Problem to solve
Find the indefinite integral \[\int[12x^{15}-3x^7-4x^3]\cdot e^{2x^4} dx\]
Solution
STEP 1
Take the integral:
 integral e^(2 x^4) (12 x^15 - 3 x^7 - 4 x^3) dx
STEP 2
Expanding the integrand e^(2 x^4) (12 x^15 - 3 x^7 - 4 x^3) gives 12 e^(2 x^4) x^15 - 3 e^(2 x^4) x^7 - 4 e^(2 x^4) x^3:
 = integral(12 e^(2 x^4) x^15 - 3 e^(2 x^4) x^7 - 4 e^(2 x^4) x^3) dx
STEP 3
Integrate the sum term by term and factor out constants:
 = 12 integral e^(2 x^4) x^15 dx - 3 integral e^(2 x^4) x^7 dx - 4 integral e^(2 x^4) x^3 dx
STEP 4
For the integrand e^(2 x^4) x^15, substitute u = x^4 and du = 4 x^3 dx:
 = 3 integral e^(2 u) u^3 du - 3 integral e^(2 x^4) x^7 dx - 4 integral e^(2 x^4) x^3 dx
STEP 5
For the integrand e^(2 u) u^3, integrate by parts, integral f dg = f g - integral g df, where 
 f = u^3, dg = e^(2 u) du, df = 3 u^2 du, g = e^(2 u)/2:
 = 3/2 e^(2 u) u^3 - 9/2 integral e^(2 u) u^2 du - 3 integral e^(2 x^4) x^7 dx - 4 integral e^(2 x^4) x^3 dx
STEP 6
For the integrand e^(2 u) u^2, integrate by parts, integral f dg = f g - integral g df, where 
 f = u^2, dg = e^(2 u) du, df = 2 u du, g = e^(2 u)/2:
 = -9/4 e^(2 u) u^2 + 3/2 e^(2 u) u^3 + 9/2 integral e^(2 u) u du - 3 integral e^(2 x^4) x^7 dx - 4 integral e^(2 x^4) x^3 dx
STEP 7
For the integrand e^(2 u) u, integrate by parts, integral f dg = f g - integral g df, where 
 f = u, dg = e^(2 u) du, df = du, g = e^(2 u)/2:
 = 9/4 e^(2 u) u - 9/4 e^(2 u) u^2 + 3/2 e^(2 u) u^3 - 9/4 integral e^(2 u) du - 3 integral e^(2 x^4) x^7 dx - 4 integral e^(2 x^4) x^3 dx
STEP 8
The integral of e^(2 u) is e^(2 u)/2:
 = -(9 e^(2 u))/8 + 9/4 e^(2 u) u - 9/4 e^(2 u) u^2 + 3/2 e^(2 u) u^3 - 3 integral e^(2 x^4) x^7 dx - 4 integral e^(2 x^4) x^3 dx
STEP 9
For the integrand e^(2 x^4) x^7, substitute s = x^4 and ds = 4 x^3 dx:
 = -(9 e^(2 u))/8 + 9/4 e^(2 u) u - 9/4 e^(2 u) u^2 + 3/2 e^(2 u) u^3 - 3/4 integral e^(2 s) s ds - 4 integral e^(2 x^4) x^3 dx
STEP 10
For the integrand e^(2 s) s, integrate by parts, integral f dg = f g - integral g df, where 
 f = s, dg = e^(2 s) ds, df = ds, g = e^(2 s)/2:
 = -(9 e^(2 u))/8 - 3/8 e^(2 s) s + 9/4 e^(2 u) u - 9/4 e^(2 u) u^2 + 3/2 e^(2 u) u^3 + 3/8 integral e^(2 s) ds - 4 integral e^(2 x^4) x^3 dx
STEP 11
The integral of e^(2 s) is e^(2 s)/2:
 = (3 e^(2 s))/16 - (9 e^(2 u))/8 - 3/8 e^(2 s) s + 9/4 e^(2 u) u - 9/4 e^(2 u) u^2 + 3/2 e^(2 u) u^3 - 4 integral e^(2 x^4) x^3 dx
STEP 12
For the integrand e^(2 x^4) x^3, substitute p = 2 x^4 and dp = 8 x^3 dx:
 = (3 e^(2 s))/16 - (9 e^(2 u))/8 - 3/8 e^(2 s) s + 9/4 e^(2 u) u - 9/4 e^(2 u) u^2 + 3/2 e^(2 u) u^3 - 1/2 integral e^p dp
STEP 13
The integral of e^p is e^p:
 = -e^p/2 + (3 e^(2 s))/16 - 3/8 e^(2 s) s + 3/2 e^(2 u) u^3 - 9/4 e^(2 u) u^2 + 9/4 e^(2 u) u - (9 e^(2 u))/8 + constant
STEP 14
Substitute back for p = 2 x^4:
 = (3 e^(2 s))/16 - 3/8 e^(2 s) s + 3/2 e^(2 u) u^3 - 9/4 e^(2 u) u^2 + 9/4 e^(2 u) u - (9 e^(2 u))/8 - e^(2 x^4)/2 + constant
STEP 15
Substitute back for s = x^4:
 = 3/2 e^(2 u) u^3 - 9/4 e^(2 u) u^2 - (9 e^(2 u))/8 + 9/4 e^(2 u) u - 3/8 e^(2 x^4) x^4 - (5 e^(2 x^4))/16 + constant
STEP 16
Substitute back for u = x^4:
 = 15/8 e^(2 x^4) x^4 - (23 e^(2 x^4))/16 + 3/2 e^(2 x^4) x^12 - 9/4 e^(2 x^4) x^8 + constant
STEP 17
Which is equal to:
Answer: | 
 | = 1/16 e^(2 x^4) (24 x^12 - 36 x^8 + 30 x^4 - 23) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back