Problem to solve
Find the indefinite integral \[\int x^2\sqrt{4-3x^2} dx\]
Solution
STEP 1
Take the integral:
 integral x^2 sqrt(4 - 3 x^2) dx
STEP 2
For the integrand x^2 sqrt(4 - 3 x^2), substitute x = (2 sin(u))/sqrt(3) and dx = (2 cos(u))/sqrt(3) du. Then sqrt(4 - 3 x^2) = sqrt(4 - 4 sin^2(u)) = 2 cos(u) and u = sin^(-1)((sqrt(3) x)/2):
 = 2/sqrt(3) integral8/3 sin^2(u) cos^2(u) du
STEP 3
Factor out constants:
 = 16/(3 sqrt(3)) integral sin^2(u) cos^2(u) du
STEP 4
Write cos^2(u) as 1 - sin^2(u):
 = 16/(3 sqrt(3)) integral sin^2(u) (1 - sin^2(u)) du
STEP 5
Expanding the integrand sin^2(u) (1 - sin^2(u)) gives sin^2(u) - sin^4(u):
 = 16/(3 sqrt(3)) integral(sin^2(u) - sin^4(u)) du
STEP 6
Integrate the sum term by term and factor out constants:
 = -16/(3 sqrt(3)) integral sin^4(u) du + 16/(3 sqrt(3)) integral sin^2(u) du
STEP 7
Use the reduction formula, integral sin^m(u) du = -(cos(u) sin^(m - 1)(u))/m + (m - 1)/m integral sin^(-2 + m)(u) du, where m = 4:
 = (4 sin^3(u) cos(u))/(3 sqrt(3)) + 4/(3 sqrt(3)) integral sin^2(u) du
STEP 8
Write sin^2(u) as 1/2 - 1/2 cos(2 u):
 = (4 sin^3(u) cos(u))/(3 sqrt(3)) + 4/(3 sqrt(3)) integral(1/2 - 1/2 cos(2 u)) du
STEP 9
Integrate the sum term by term and factor out constants:
 = (4 sin^3(u) cos(u))/(3 sqrt(3)) - 2/(3 sqrt(3)) integral cos(2 u) du + 2/(3 sqrt(3)) integral1 du
STEP 10
For the integrand cos(2 u), substitute s = 2 u and ds = 2 du:
 = (4 sin^3(u) cos(u))/(3 sqrt(3)) - 1/(3 sqrt(3)) integral cos(s) ds + 2/(3 sqrt(3)) integral1 du
STEP 11
The integral of cos(s) is sin(s):
 = -sin(s)/(3 sqrt(3)) + (4 sin^3(u) cos(u))/(3 sqrt(3)) + 2/(3 sqrt(3)) integral1 du
STEP 12
The integral of 1 is u:
 = -sin(s)/(3 sqrt(3)) + (2 u)/(3 sqrt(3)) + (4 sin^3(u) cos(u))/(3 sqrt(3)) + constant
STEP 13
Substitute back for s = 2 u:
 = (2 u)/(3 sqrt(3)) - sin(2 u)/(3 sqrt(3)) + (4 sin^3(u) cos(u))/(3 sqrt(3)) + constant
STEP 14
Apply the double angle formula sin(2 u) = 2 sin(u) cos(u):
 = (2 u)/(3 sqrt(3)) + (4 sin^3(u) cos(u))/(3 sqrt(3)) - (2 sin(u) cos(u))/(3 sqrt(3)) + constant
STEP 15
Express cos(u) in terms of sin(u) using cos^2(u) = 1 - sin^2(u):
 = (2 u)/(3 sqrt(3)) - (2 sqrt(1 - sin^2(u)) sin(u))/(3 sqrt(3)) + (4 sin^3(u) cos(u))/(3 sqrt(3)) + constant
STEP 16
Substitute back for u = sin^(-1)((sqrt(3) x)/2):
 = -1/6 sqrt(4 - 3 x^2) x + 1/4 sqrt(4 - 3 x^2) x^3 + (2 sin^(-1)((sqrt(3) x)/2))/(3 sqrt(3)) + constant
STEP 17
Which is equal to:
Answer: | 
 | = 1/36 (3 x sqrt(4 - 3 x^2) (3 x^2 - 2) + 8 sqrt(3) sin^(-1)((sqrt(3) x)/2)) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back