Problem to solve
Find the indefinite integral \[\int\frac{\tan^2[x]+2}{\tan[x]+2} dx\]
Solution
STEP 1
Take the integral:
 integral(tan^2(x) + 2)/(tan(x) + 2) dx
STEP 2
Multiply numerator and denominator of (tan^2(x) + 2)/(tan(x) + 2) by sec^2(x):
 = integral(2 sec^2(x) + tan^2(x) sec^2(x))/(2 sec^2(x) + tan(x) sec^2(x)) dx
STEP 3
Prepare to substitute u = tan(x). Rewrite (2 sec^2(x) + tan^2(x) sec^2(x))/(2 sec^2(x) + tan(x) sec^2(x)) using sec^2(x) = tan^2(x) + 1:
 = integral((tan^2(x) + 2) sec^2(x))/(tan^3(x) + 2 tan^2(x) + tan(x) + 2) dx
STEP 4
For the integrand ((tan^2(x) + 2) sec^2(x))/(tan^3(x) + 2 tan^2(x) + tan(x) + 2), substitute u = tan(x) and du = sec^2(x) dx:
 = integral(u^2 + 2)/(u^3 + 2 u^2 + u + 2) du
STEP 5
For the integrand (u^2 + 2)/(u^3 + 2 u^2 + u + 2), use partial fractions:
 = integral(2 - u)/(5 (u^2 + 1)) + 6/(5 (u + 2)) du
STEP 6
Integrate the sum term by term and factor out constants:
 = 1/5 integral(2 - u)/(u^2 + 1) du + 6/5 integral1/(u + 2) du
STEP 7
Expanding the integrand (2 - u)/(u^2 + 1) gives 2/(u^2 + 1) - u/(u^2 + 1):
 = 1/5 integral(2/(u^2 + 1) - u/(u^2 + 1)) du + 6/5 integral1/(u + 2) du
STEP 8
Integrate the sum term by term and factor out constants:
 = -1/5 integral u/(u^2 + 1) du + 2/5 integral1/(u^2 + 1) du + 6/5 integral1/(u + 2) du
STEP 9
For the integrand u/(u^2 + 1), substitute s = u^2 + 1 and ds = 2 u du:
 = -1/10 integral1/s ds + 2/5 integral1/(u^2 + 1) du + 6/5 integral1/(u + 2) du
STEP 10
The integral of 1/s is log(s):
 = -log(s)/10 + 2/5 integral1/(u^2 + 1) du + 6/5 integral1/(u + 2) du
STEP 11
The integral of 1/(u^2 + 1) is tan^(-1)(u):
 = 2/5 tan^(-1)(u) - log(s)/10 + 6/5 integral1/(u + 2) du
STEP 12
For the integrand 1/(u + 2), substitute p = u + 2 and dp = du:
 = 2/5 tan^(-1)(u) - log(s)/10 + 6/5 integral1/p dp
STEP 13
The integral of 1/p is log(p):
 = (6 log(p))/5 - log(s)/10 + 2/5 tan^(-1)(u) + constant
STEP 14
Substitute back for p = u + 2:
 = -log(s)/10 + 6/5 log(u + 2) + 2/5 tan^(-1)(u) + constant
STEP 15
Substitute back for s = u^2 + 1:
 = -1/10 log(u^2 + 1) + 6/5 log(u + 2) + 2/5 tan^(-1)(u) + constant
STEP 16
Substitute back for u = tan(x):
 = (2 x)/5 + 6/5 log(tan(x) + 2) - 1/10 log(sec^2(x)) + constant
STEP 17
Factor the answer a different way:
 = 1/10 (4 x + 12 log(tan(x) + 2) - log(sec^2(x))) + constant
STEP 18
Which is equivalent for restricted x values to:
Answer: | 
 | = 1/5 (2 x - 5 log(cos(x)) + 6 log(sin(x) + 2 cos(x))) + constant
More problems
Number
001Find the indefinite integral \(\int\frac{x^2+2}{x^3+5x^2+2x-8} dx\)
002Find the indefinite integral \(\int\frac{4x^4-2}{x^3+4x^2+x-6} dx\)
003Find the indefinite integral \(\int\frac{4x^4-22x^3+11x^2-99x-34}{x^3-6x^2+4x-24} dx\)
004Find the indefinite integral \(\int\frac{3x^4+4x^2+5x}{(x-1)(x^2+1)^2} dx\)
005Find the indefinite integral \(\int\frac{x^6+6x^4+8x^2-4}{(x^2+4)(x^2+3)} dx\)
006Find the indefinite integral \(\int(-4x^4+6x^2+8x-1)\cos(x) dx\)
007Find the indefinite integral \(\int(-7x^5+2x^4-2)\cdot3^xdx\)
008Find the indefinite integral \(\int\arcsin^4(x) dx\)
009Find the indefinite integral \(\int\sin(\ln(x)) dx\)
010Find the indefinite integral \(\int(12x^{15}-3x^7-4x^3)\cdot e^{2x^4} dx\)
011Find the indefinite integral \(\int\frac{\sqrt{(3x^2+4)^3}}{x^4} dx\)
012Find the indefinite integral \(\int\frac{x^2}{\sqrt{2x^2-5}} dx\)
013Find the indefinite integral \(\int\frac{x^6}{\sqrt{(x^2+4)^3}} dx\)
014Find the indefinite integral \(\int x^2\sqrt{4-3x^2} dx\)
015Find the indefinite integral \(\int x^4\cdot\sqrt{x^2+4x+5} dx\)
016Find the indefinite integral \(\int\frac{\sqrt{x+2}}{x+1} dx\)
017Find the indefinite integral \(\int\frac{\sqrt{x+2}-4}{5-\sqrt{x+2}} dx\)
018Find the indefinite integral \(\int\frac{3\sqrt[3]{2x-1}-4}{\sqrt[6]{2x-1}-1} dx\)
019Find the indefinite integral \(\int\sqrt{\frac{x+3}{1-x}} dx\)
020Find the indefinite integral \(\int\frac{\sqrt[3]{x+1}-\sqrt{x+1}}{x} dx\)
021Find the indefinite integral \(\int\frac{\sin(x)-3\cos(x)}{\cos(x)-2} dx\)
022Find the indefinite integral \(\int\frac{3\sec(x)-\cot(x)}{1-\csc(x)} dx\)
023Find the indefinite integral \(\int\frac{\tan^2(x)+2}{\tan(x)+2} dx\)
024Find the indefinite integral \(\int\frac{3\sin^4(x)-2\cos^2(x)}{1+\sin^2(x)} dx\)
025Find the indefinite integral \(\int\tan^4(x)\sec^5(x) dx\)
Back