Problem to solve
Solve \[\frac{x}{2}-3z=-2\], \[3y-\frac{z}{2}=2\], \[x+3y-z=5\]
Solution
STEP 1
Solve the following system:
{-3 z + x/2 = -2
-z/2 + 3 y = 2
x + 3 y - z = 5
STEP 2
Express the system in matrix form:
(1/2 | 0 | -3
0 | 3 | -1/2
1 | 3 | -1)(x
y
z) = (-2
2
5)
STEP 3
Write the system in augmented matrix form and use Gaussian elimination:
(1/2 | 0 | -3 | -2
0 | 3 | -1/2 | 2
1 | 3 | -1 | 5)
STEP 4
Swap row 1 with row 3:
(1 | 3 | -1 | 5
0 | 3 | -1/2 | 2
1/2 | 0 | -3 | -2)
STEP 5
Multiply row 2 by 2:
(1 | 3 | -1 | 5
0 | 6 | -1 | 4
1/2 | 0 | -3 | -2)
STEP 6
Multiply row 3 by 2:
(1 | 3 | -1 | 5
0 | 6 | -1 | 4
1 | 0 | -6 | -4)
STEP 7
Subtract row 1 from row 3:
(1 | 3 | -1 | 5
0 | 6 | -1 | 4
0 | -3 | -5 | -9)
STEP 8
Multiply row 3 by -1:
(1 | 3 | -1 | 5
0 | 6 | -1 | 4
0 | 3 | 5 | 9)
STEP 9
Subtract 1/2 × (row 2) from row 3:
(1 | 3 | -1 | 5
0 | 6 | -1 | 4
0 | 0 | 11/2 | 7)
STEP 10
Multiply row 3 by 2:
(1 | 3 | -1 | 5
0 | 6 | -1 | 4
0 | 0 | 11 | 14)
STEP 11
Divide row 3 by 11:
(1 | 3 | -1 | 5
0 | 6 | -1 | 4
0 | 0 | 1 | 14/11)
STEP 12
Add row 3 to row 2:
(1 | 3 | -1 | 5
0 | 6 | 0 | 58/11
0 | 0 | 1 | 14/11)
STEP 13
Divide row 2 by 6:
(1 | 3 | -1 | 5
0 | 1 | 0 | 29/33
0 | 0 | 1 | 14/11)
STEP 14
Subtract 3 × (row 2) from row 1:
(1 | 0 | -1 | 26/11
0 | 1 | 0 | 29/33
0 | 0 | 1 | 14/11)
STEP 15
Add row 3 to row 1:
(1 | 0 | 0 | 40/11
0 | 1 | 0 | 29/33
0 | 0 | 1 | 14/11)
STEP 16
Collect results:
Answer: | 
 | {x = 40/11
y = 29/33
z = 14/11