Problem to solve
Solve \[\frac{x}{3}-\frac{y}{2}+z=2\], \[-x-\frac{y}{3}+2z=3\], \[2x-3y+\frac{z}{3}=-1\]
Solution
STEP 1
Solve the following system:
{x/3 - y/2 + z = 2
-x - y/3 + 2 z = 3
2 x - 3 y + z/3 = -1
STEP 2
Express the system in matrix form:
(1/3 | -1/2 | 1
-1 | -1/3 | 2
2 | -3 | 1/3)(x
y
z) = (2
3
-1)
STEP 3
Write the system in augmented matrix form and use Gaussian elimination:
(1/3 | -1/2 | 1 | 2
-1 | -1/3 | 2 | 3
2 | -3 | 1/3 | -1)
STEP 4
Swap row 1 with row 3:
(2 | -3 | 1/3 | -1
-1 | -1/3 | 2 | 3
1/3 | -1/2 | 1 | 2)
STEP 5
Add 1/2 × (row 1) to row 2:
(2 | -3 | 1/3 | -1
0 | -11/6 | 13/6 | 5/2
1/3 | -1/2 | 1 | 2)
STEP 6
Multiply row 1 by 3:
(6 | -9 | 1 | -3
0 | -11/6 | 13/6 | 5/2
1/3 | -1/2 | 1 | 2)
STEP 7
Multiply row 2 by 6:
(6 | -9 | 1 | -3
0 | -11 | 13 | 15
1/3 | -1/2 | 1 | 2)
STEP 8
Multiply row 3 by 6:
(6 | -9 | 1 | -3
0 | -11 | 13 | 15
2 | -3 | 6 | 12)
STEP 9
Subtract 1/3 × (row 1) from row 3:
(6 | -9 | 1 | -3
0 | -11 | 13 | 15
0 | 0 | 17/3 | 13)
STEP 10
Multiply row 3 by 3:
(6 | -9 | 1 | -3
0 | -11 | 13 | 15
0 | 0 | 17 | 39)
STEP 11
Divide row 3 by 17:
(6 | -9 | 1 | -3
0 | -11 | 13 | 15
0 | 0 | 1 | 39/17)
STEP 12
Subtract 13 × (row 3) from row 2:
(6 | -9 | 1 | -3
0 | -11 | 0 | -252/17
0 | 0 | 1 | 39/17)
STEP 13
Divide row 2 by -11:
(6 | -9 | 1 | -3
0 | 1 | 0 | 252/187
0 | 0 | 1 | 39/17)
STEP 14
Add 9 × (row 2) to row 1:
(6 | 0 | 1 | 1707/187
0 | 1 | 0 | 252/187
0 | 0 | 1 | 39/17)
STEP 15
Subtract row 3 from row 1:
(6 | 0 | 0 | 1278/187
0 | 1 | 0 | 252/187
0 | 0 | 1 | 39/17)
STEP 16
Divide row 1 by 6:
(1 | 0 | 0 | 213/187
0 | 1 | 0 | 252/187
0 | 0 | 1 | 39/17)
STEP 17
Collect results:
Answer: | 
 | {x = 213/187
y = 252/187
z = 39/17