tododemate.com
Home
Social Media
YouTube
Instagram
Facebook
Twitter
Topics
Implicit derivation
Linear system equations by elimination
Linear system equations by substitution
Factoring polynomials
Linear system equations by Cramer's rule
Linear equations
Limits
Derivates
Integrals
Linear system equations by Gaussian elimination
Solved mathematical problems
YouTube
Instagram
Facebook
Twitter
Problem to solve
Solve \[3y+5x+1-2y=2y-3\], \[3y-2+5x=2x-3y+2\]
Solution
STEP 1
STEP 2
STEP 3
STEP 4
STEP 5
STEP 6
STEP 7
STEP 8
More problems
Number
001
Solve \(3x+2y=5\), \(-4x+5y=2\)
002
Solve \(-4x+5y+3=x+4\), \(6x-7y=2y-1\)
003
Solve \(-5x+2y=-3+2x\), \(4x-2y+3=7-4x\)
004
Solve \(3y+5x+1-2y=2y-3\), \(3y-2+5x=2x-3y+2\)
005
Solve \(3x+5y=2\), \(-5x+6y=5\)
006
Solve \(-\frac{2}{3}x+5y=4\), \(7x-5y=4\)
007
Solve \( 4x-5y=3\), \(-2x+6y=-2\)
008
Solve \(\frac{6}{5}x+\frac{3}{2}y=5\), \(-\frac{3}{5}x+y=5y+2\)
009
Solve \(\frac{3}{2}x-\frac{1}{2}y=6x-2\), \(3x+\frac{2}{3}y=-2y-1\)
010
Solve \(-2x+6y-4x=5x-3y+3\), \(7y+4x=9-2y\)
011
Solve \(\frac{2x+y}{3}-\frac{2(x+y)}{4}=2\), \(-\frac{2(x-y)}{5}-\frac{x+2y}{2}=-1\)
012
Solve \(-\frac{2(x-y)}{5}+\frac{2x-y}{2}=-1\), \(4(2x+3)-\frac{3x-4y}{2}=5\)
013
Solve \(\frac{x+2}{2}+\frac{3y-1}{4}=-1\), \(2x+y-2(3x-4y)=x+3\)
014
Solve \(\frac{2x-1}{4}+\frac{x-2y}{3}=4+x\), \(\frac{x+y}{3}-(x-y)=-2y+1\)
015
Solve \(3(x-5y)+2(2x-1)=2(x-y)\), \(2(x-1)-3(x-y)=-3x\)
016
Solve \(x-y+3z=2\), \(2x-3y=-4\), \(x+y+z=-2\)
017
Solve \(-4x+y-5z=2\), \(4x+2y+z=1\), \(2x-y+3z=4\)
018
Solve \(-10x+3y+z=-2\), \(3x-2y+5z=4\), \(-6x+4y+2z=1\)
019
Solve \(4x-3y=7\), \(2x-3y+z=7\), \(4x-y+z=-8\)
020
Solve \(-x+3y+2z=5\), \(-3x-2y+z=-4\), \(x-y+z=3\)
021
Solve \(\frac{x}{3}-\frac{y}{2}+z=2\), \(-x-\frac{y}{3}+2z=3\), \(2x-3y+\frac{z}{3}=-1\)
022
Solve \(2x-\frac{y}{3}+2z=-1\), \(x+y+\frac{z}{2}=-1\), \(x-2y+z=2\)
023
Solve \(-\frac{3x}{2}+3y+z=2\), \(3x-y+z=5\), \(\frac{x}{3}-y+z=2\)
024
Solve \(\frac{2x}{3}-2z=-2\), \(2y-4z=2\), \(\frac{x}{3}-5y=2\)
025
Solve \(\frac{x}{2}-3z=-2\), \(3y-\frac{z}{2}=2\), \(x+3y-z=5\)
Back