Problem to solve
Compute \[ \lim_{ x \to \infty } [\sqrt{x^2-x}-x] \]
Solution
STEP 1
Find the following limit:
lim_(x->∞)(sqrt(x^2 - x) - x)
STEP 2
Hint: | Rationalize the expression.
sqrt(x^2 - x) - x = ((sqrt(x^2 - x) - x) (x + sqrt(x^2 - x)))/(x + sqrt(x^2 - x)) = -x/(x + sqrt(x^2 - x)):
lim_(x->∞)(-x/(x + sqrt(x^2 - x)))
STEP 3
Hint: | Factor a constant multiple out of the limit.
lim_(x->∞)-x/(x + sqrt(x^2 - x)) = -lim_(x->∞) x/(x + sqrt(x^2 - x)):
-1 lim_(x->∞) x/(x + sqrt(x^2 - x))
STEP 4
Hint: | Factor 1/x out of the denominator.
x/(x + sqrt(x^2 - x)) = 1/(sqrt(x^2 - x)/x + 1):
-lim_(x->∞) x/(x (sqrt(x^2 - x)/x + 1))
STEP 5
Hint: | Simplify the expression inside the limit.
x/(x (sqrt(x^2 - x)/x + 1)) = 1/(sqrt(x^2 - x)/x + 1):
-lim_(x->∞) 1/(sqrt(x^2 - x)/x + 1)
STEP 6
Hint: | The limit of a reciprocal is the reciprocal of the limit.
Using the reciprocal rule, write lim_(x->∞) 1/(sqrt(x^2 - x)/x + 1) as 1/(lim_(x->∞)(sqrt(x^2 - x)/x + 1)):
-(1/(lim_(x->∞)(sqrt(x^2 - x)/x + 1)))
STEP 7
Hint: | 1 is constant, so we may pull it out of the limit.
lim_(x->∞)(sqrt(x^2 - x)/x + 1) = lim_(x->∞) sqrt(x^2 - x)/x + 1:
(-1)/(lim_(x->∞) sqrt(x^2 - x)/x + 1)
STEP 8
Hint: | Factor a square root out of the quotient.
sqrt(x^2 - x)/x = sqrt((x^2 - x)/x^2):
(-1)/(lim_(x->∞)(sqrt((x^2 - x)/x^2)) + 1)
STEP 9
Hint: | Using the power rule, pass the limit through the 2nd root.
lim_(x->∞) sqrt((x^2 - x)/x^2) = sqrt(lim_(x->∞) (x^2 - x)/x^2):
(-1)/(sqrt(lim_(x->∞) (x^2 - x)/x^2) + 1)
STEP 10
Hint: | Divide numerator and denominator of (x^2 - x)/x^2 by the denominator's leading term.
The leading term in the denominator of (x^2 - x)/x^2 is x^2. Divide the numerator and denominator by this:
(-1)/(sqrt(lim_(x->∞) (1 - 1/x)/1) + 1)
STEP 11
Hint: | Evaluate limits that tend to zero.
The expression -1/x tends to zero as x approaches ∞:
(-1)/(sqrt(1) + 1)
STEP 12
Hint: | Evaluate -1/(sqrt(1) + 1).
-1/(sqrt(1) + 1) = -1/2:
Answer: | 
 | -1/2