Problem to solve
Compute \[ \lim_{ x \to -\infty } \frac{4x-1}{\sqrt{x^2+2}} \]
Solution
STEP 1
Find the following limit:
lim_(x->-∞) (4 x - 1) (x^2 + 2)^(-1/2)
STEP 2
Hint: | Factor a square root out of the quotient.
For large negative values of x:
lim_(x->-∞) (4 x - 1)/sqrt(x^2 + 2) = lim_(x->-∞)-sqrt((4 x - 1)^2/(x^2 + 2)) = -lim_(x->-∞) sqrt((4 x - 1)^2/(x^2 + 2)):
-lim_(x->-∞)(sqrt((4 x - 1)^2/(x^2 + 2)))
STEP 3
Hint: | Using the power rule, pass the limit through the 2nd root.
lim_(x->-∞) sqrt((4 x - 1)^2/(x^2 + 2)) = sqrt(lim_(x->-∞) (4 x - 1)^2/(x^2 + 2)):
sqrt(lim_(x->-∞) (4 x - 1)^2/(x^2 + 2))
STEP 4
Hint: | Expand the numerator of (4 x - 1)^2/(x^2 + 2).
(4 x - 1)^2 = 16 x^2 - 8 x + 1:
-sqrt(lim_(x->-∞) (16 x^2 - 8 x + 1)/(x^2 + 2))
STEP 5
Hint: | Divide numerator and denominator of (16 x^2 - 8 x + 1)/(x^2 + 2) by the denominator's leading term.
The leading term in the denominator of (16 x^2 - 8 x + 1)/(x^2 + 2) is x^2. Divide the numerator and denominator by this:
-sqrt(lim_(x->-∞) (16 - 8/x + 1/x^2)/(1 + 2/x^2))
STEP 6
Hint: | Evaluate limits that tend to zero.
The expressions 1/x^2, -8/x and 2/x^2 all tend to zero as x approaches -∞:
-sqrt(16)
STEP 7
Hint: | Evaluate -sqrt(16).
-sqrt(16) = -4:
Answer: | 
 | -4