Problem to solve
Compute \[ \lim_{ x \to 0 } \frac{\sqrt{x+3}-\sqrt{3}}{x} \]
Solution
STEP 1
Find the following limit:
lim_(x->0) (sqrt(x + 3) - sqrt(3))/x
STEP 2
Hint: | Rationalize the expression.
(sqrt(x + 3) - sqrt(3))/x = ((sqrt(x + 3) - sqrt(3)) (sqrt(x + 3) + sqrt(3)))/(x (sqrt(x + 3) + sqrt(3))) = 1/(sqrt(x + 3) + sqrt(3)):
lim_(x->0)(1/(sqrt(x + 3) + sqrt(3)))
STEP 3
Hint: | The limit of a continuous function at a point is just its value there.
lim_(x->0) 1/(sqrt(x + 3) + sqrt(3)) = 1/(sqrt(0 + 3) + sqrt(3)) = 1/(2 sqrt(3)):
Answer: | 
 | 1/(2 sqrt(3))