Problem to solve
Solve \[\frac{2x-1}{4}+\frac{x-2y}{3}=4+x\], \[\frac{x+y}{3}-[x-y]=-2y+1\]
Solution
STEP 1
Solve the following system:
{1/4 (2 x - 1) + 1/3 (-2 y + x) = x + 4
-x + y + (y + x)/3 = -2 y + 1
STEP 2
Hint: | Expand the left hand side of the equation 1/4 (2 x - 1) + 1/3 (-2 y + x) = x + 4.
(2 x - 1)/4 + (-2 y + x)/3 = (x/2 - 1/4) + (-(2 y)/3 + x/3) = -(2 y)/3 + (5 x)/6 - 1/4:
{(-(2 y)/3 + (5 x)/6 - 1/4) = x + 4
-x + y + (y + x)/3 = -2 y + 1
STEP 3
Hint: | Expand the left hand side of the equation -x + y + (y + x)/3 = -2 y + 1.
-x + y + (y + x)/3 = -x + y + (y/3 + x/3) = (4 y)/3 - (2 x)/3:
{-(2 y)/3 + (5 x)/6 - 1/4 = x + 4
((4 y)/3 - (2 x)/3) = -2 y + 1
STEP 4
Hint: | Choose an equation and a variable to solve for.
In the first equation, look to solve for y:
{-(2 y)/3 + (5 x)/6 - 1/4 = x + 4
(4 y)/3 - (2 x)/3 = -2 y + 1
STEP 5
Hint: | Isolate terms with y to the left hand side.
Subtract (5 x)/6 - 1/4 from both sides:
{-(2 y)/3 = x/6 + 17/4
(4 y)/3 - (2 x)/3 = -2 y + 1
STEP 6
Hint: | Solve for y.
Multiply both sides by -3/2:
{y = -x/4 - 51/8
(4 y)/3 - (2 x)/3 = -2 y + 1
STEP 7
Hint: | Perform a substitution.
Substitute y = -x/4 - 51/8 into the second equation:
{y = -x/4 - 51/8
4/3 (-x/4 - 51/8) - (2 x)/3 = 1 - 2 (-x/4 - 51/8)
STEP 8
Hint: | Expand the left hand side of the equation 4/3 (-x/4 - 51/8) - (2 x)/3 = 1 - 2 (-x/4 - 51/8).
(4 (-x/4 - 51/8))/3 - (2 x)/3 = -(2 x)/3 + (-x/3 - 17/2) = -x - 17/2:
{y = -x/4 - 51/8
(-x - 17/2) = 1 - 2 (-x/4 - 51/8)
STEP 9
Hint: | Expand the right hand side of the equation -x - 17/2 = 1 - 2 (-x/4 - 51/8).
1 - 2 (-x/4 - 51/8) = (x/2 + 51/4) + 1 = x/2 + 55/4:
{y = -x/4 - 51/8
-x - 17/2 = (x/2 + 55/4)
STEP 10
Hint: | Choose an equation and a variable to solve for.
In the second equation, look to solve for x:
{y = -x/4 - 51/8
-x - 17/2 = x/2 + 55/4
STEP 11
Hint: | Isolate x to the left hand side.
Subtract x/2 - 17/2 from both sides:
{y = -x/4 - 51/8
-(3 x)/2 = 89/4
STEP 12
Hint: | Solve for x.
Multiply both sides by -2/3:
{y = -x/4 - 51/8
x = -89/6
STEP 13
Hint: | Perform a back substitution.
Substitute x = -89/6 into the first equation:
{y = -8/3
x = -89/6
STEP 14
Hint: | Sort results.
Collect results in alphabetical order:
Answer: | 
 | {x = -89/6
y = -8/3