Problem to solve
Solve \[2x-\frac{y}{3}+2z=-1\], \[x+y+\frac{z}{2}=-1\], \[x-2y+z=2\]
Solution
STEP 1
Solve the following system:
{2 x - y/3 + 2 z = -1
x + y + z/2 = -1
x - 2 y + z = 2
STEP 2
Express the system in matrix form:
(2 | -1/3 | 2
1 | 1 | 1/2
1 | -2 | 1)(x
y
z) = (-1
-1
2)
STEP 3
Solve the system with Cramer's rule:
x = (-1 | -1/3 | 2
-1 | 1 | 1/2
2 | -2 | 1)/(2 | -1/3 | 2
1 | 1 | 1/2
1 | -2 | 1) and y = (2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1)/(2 | -1/3 | 2
1 | 1 | 1/2
1 | -2 | 1) and z = (2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2)/(2 | -1/3 | 2
1 | 1 | 1/2
1 | -2 | 1)
STEP 4
Evaluate the determinant 2 | -1/3 | 2
1 | 1 | 1/2
1 | -2 | 1 = (-11)/6:
x = (-1 | -1/3 | 2
-1 | 1 | 1/2
2 | -2 | 1)/(-11/6) and y = (2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1)/(-11/6) and z = (2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2)/(-11/6)
STEP 5
The gcd of -1 | -1/3 | 2
-1 | 1 | 1/2
2 | -2 | 1 and -11/6 is 1/6, so (-1 | -1/3 | 2
-1 | 1 | 1/2
2 | -2 | 1)/((-11)/6) = (6 -1 | -1/3 | 2
-1 | 1 | 1/2
2 | -2 | 1)/(6 ((-11)/6)) = -6/11 -1 | -1/3 | 2
-1 | 1 | 1/2
2 | -2 | 1:
x = -6/11 -1 | -1/3 | 2
-1 | 1 | 1/2
2 | -2 | 1 and y = (2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1)/((-11)/6) and z = (2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2)/((-11)/6)
STEP 6
The gcd of 2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1 and -11/6 is 1/6, so (2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1)/((-11)/6) = (6 2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1)/(6 ((-11)/6)) = -6/11 2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1:
x = (-6 -1 | -1/3 | 2
-1 | 1 | 1/2
2 | -2 | 1)/11 and y = -6/11 2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1 and z = (2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2)/((-11)/6)
STEP 7
The gcd of 2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2 and -11/6 is 1/6, so (2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2)/((-11)/6) = (6 2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2)/(6 ((-11)/6)) = -6/11 2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2:
x = (-6 -1 | -1/3 | 2
-1 | 1 | 1/2
2 | -2 | 1)/11 and y = (-6 2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1)/11 and z = -6/11 2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2
STEP 8
Evaluate the determinant -1 | -1/3 | 2
-1 | 1 | 1/2
2 | -2 | 1 = (-8)/3:
x = (-6)/11×-8/3 and y = (-6 2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1)/11 and z = (-6 2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2)/11
STEP 9
(-6)/11×(-8)/3 = 16/11:
x = 16/11 and y = (-6 2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1)/11 and z = (-6 2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2)/11
STEP 10
Evaluate the determinant 2 | -1 | 2
1 | -1 | 1/2
1 | 2 | 1 = 5/2:
x = 16/11 and y = (-6)/11×5/2 and z = (-6 2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2)/11
STEP 11
(-6)/11×5/2 = (-15)/11:
x = 16/11 and y = -15/11 and z = (-6 2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2)/11
STEP 12
Evaluate the determinant 2 | -1/3 | -1
1 | 1 | -1
1 | -2 | 2 = 4:
x = 16/11 and y = (-15)/11 and z = (-6)/11×4
STEP 13
(-6)/11×4 = (-24)/11:
Answer: | 
 | x = 16/11 and y = (-15)/11 and z = -24/11