001 | Derivate \(3\cos(x)-\frac{1}{\sqrt{x^3}}\) |
002 | Derivate \(x\sqrt{x^5}+6\csc(x)+x^5\) |
003 | Derivate \(2\cdot3^x+5\sqrt{x}-4\arccos(x)\) |
004 | Derivate \(5\textrm{arccosh}(x)-4\cot(x)+2x^4\) |
005 | Derivate \(e^{\tan(x)}\) |
006 | Derivate \(\frac{\sec(x)-3x^4}{x^4+6}\) |
007 | Derivate \(\frac{x^5+\tan(x)}{5^x-4\cos(x)}\) |
008 | Derivate \(\frac{\ln(x)-\sec(x^4)}{6\cos(3x-6)-x^3}\) |
009 | Derivate \(\tan(\cos^2(x))\) |
010 | Derivate \(\sec^5(x^4-6x+9)\) |
011 | Derivate \((\csc(x^4)-e^{x^5+6})(\tan(x^5)-5x^{4/5})\) |
012 | Derivate \(\sec^3(x^2-cos(x^2))\) |
013 | Derivate \(\sqrt{2x^3 \sec(x^4)+5}\) |
014 | Derivate \(\arctan(x^2)-x^5\sin(x)\cos(x^5)\) |
015 | Derivate \((x^4-6)^4(3x^7-6x^6+2)^5\) |
016 | Derivate \(\frac{e^{6^x}}{\sqrt[4]{\sec^3(x+5)}}\) |
017 | Derivate \(\csc(\tan^2(-3x^5-2))\) |
018 | Derivate \(\textrm{arcsec}(x^4)\cdot7^{\sin(x)}\) |
019 | Derivate \(\frac{\tanh(x^4)}{\sin^2(x)+1}\) |
020 | Derivate \(\frac{(x^5-6x)^4}{(x^4+\cos(6x))^6}\) |
021 | Derivate \(\ln(x^7-2x)\cdot\tan(x^4-2)\) |
022 | Derivate \(\frac{(2x^5-2)^3(3x^6-1)^8}{(x^4-2)^5\sqrt{x^2-3}}\) |
023 | Derivate \(\frac{\sin(\cos(x^3))}{\sqrt{\ln(x)}}\) |
024 | Derivate \(\ln^4(x^5+\sin(x))\cdot\sin(4x)\) |
025 | Derivate \(\tan(x^5)-\frac{7}{\sqrt{x^5+8}}\) |